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Abstract

Membrane computing is a branch of natural computing aiming to abstract computing ideas for the structure and the functioning of
living cells as well as from the way the cells are organized in tissues or higher-order structures. Trajectories are used as a tool for modeling
language operations and other related objects. A trajectory P system consists of a membrane structure in which the object in each mem-
brane is a collection of words and the evolutionary rules are given in terms of trajectories. In this paper, we present some properties of
trajectory P systems.
� 2008 National Natural Science Foundation of China and Chinese Academy of Sciences. Published by Elsevier Limited and Science in
China Press. All rights reserved.
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1. Introduction

Membrane computing deals with distributed computing
models inspired from the structure and the functioning of
the living cell [1,2]. Very briefly, compartments (regions)
defined by a hierarchical arrangement of membranes have
multisets of objects together with evolutionary rules associ-
ated with the membranes. Parallel composition of words
and languages appears as a fundamental operation in par-
allel computation and in the theory of concurrency. Usu-
ally, this operation is modeled by the shuffle operation or
restrictions of this operation, such as literal shuffle and
insertion. Roughly speaking, a trajectory is a segment of
a line in plane, starting in the origin of axes and continuing
parallel with the axis Ox and Oy. The line can change its
direction only in points of nonnegative integer coordinates.
A trajectory defines how to skip from a word to another
word during the shuffle operation.

Shuffle on trajectories [3,4] provides a method of great
flexibility to handle the operation of parallel composition
of processes from the catenation to the usual shuffle of pro-
cesses. Also, a membrane serves as a communication chan-
nel between a cell and its ‘‘neighbors”.

This paper brings together two areas of theoretical com-
puter science, namely membrane computing and trajecto-
ries, where trajectories are used as evolutionary rules in
membrane computing.

In this paper, in Section 3 the algebraic properties of tra-
jectories are studied and in Section 4 we introduce the
notion of trajectory P system and its properties are
discussed.

2. Preliminaries

In this section we deal with the basic concept of P sys-
tem [1,2] and trajectories [3,4].

P system [1] is a new compatibility model of a distrib-
uted parallel type based on the notion of a membrane
structure. Such a structure consists of computing cells
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which are organized hierarchically by the inclusion rela-
tion. Each cell is enclosed by its membrane. Each cell is
an independent computing agent with its own computing
program, which produces objects. The interaction between
cells consists of the exchange of objects through
membranes.

A membrane structure can be represented in a natural
way as a Venn diagram (Fig. 1).

The membranes are labeled in a one-to-one manner.
Each membrane identifies a region delimited by it and
the membranes placed directly inside it (if any). A mem-
brane without any other membrane inside is said to be
elementary.

The membrane surrounding the cell which is the highest
in the hierarchy is called the skin membrane.

In the regions delimited by the membranes we place
multisets of objects from a specified finite set V together
with evolutionary rules for these objects.

A P system of degree m, m P 1 is a construct
p ¼ ðV ; T ;C; l; l1; l2; . . . ; lm; ðR1; q1Þ; . . . ; ðRm; qmÞÞwhere

(i) V is an alphabet; its elements are called objects;
(ii) T � V (the output alphabet);

(iii) C � V , C \ T ¼ /;
(iv) l is a membrane structure consisting of m membrane;
(v) li, 1 6 i 6 m, are multisets over V associated with the

regions 1; 2; . . . ; m of l;
(vi) Ri, 1 6 i 6 m, are finite sets of evolutionary rules over

V associated with regions 1; 2; . . . ; m of l; qi is a par-
tial order relation over Ri; 1 6 i 6 m, specifying a pri-
ority relation among rules of Ri. An evolutionary rule
is a pair ðu; vÞ, which we will usually write in the form
u! v, where u is a string over V and v ¼ v0 or v ¼ v0d,
where v0 is a string over

ðV � fhere; outgÞ [ ðV � finj=1 6 j 6 mgÞ;
and d is a special symbol not in V.

We illustrate the computation of the P system by the fol-
lowing example.

Example 1. Consider the system

p ¼ ðR; T ;C; l;w1;w2; ðR1; q1Þ; ðR2; q2ÞÞ
R ¼ fa; b; c; dg;

T ¼ fa; c; dg;
C ¼ /;

l ¼ ½1½2�2�1;
w1 ¼ a;

w2 ¼ k;

R1 ¼ fa! aða; outÞðb; in2Þ;
a! bðb; outÞða; in2Þ; c! ðc; outÞ;
d ! ðd; outÞg;

q1 ¼ /;

R2 ¼ fb! bc; a! ddg;
q2 ¼ /:

We start working in the skin membrane (see Fig. 2),
where a copy of object a is available. By using the rule
a! aða; outÞðb; in2Þ, we reproduce the object a in a mem-
brane 1, we send out a copy of the same object, and we
introduce a copy of b in membrane 2. From now on, we
have applicable rules in both the inner and the outer mem-
branes. At each step in membrane 1. we repeat the previous
operations, while in the inner membrane at each step we
produce in parallel a copy of c from each available copy
of b. For instance, after five steps, we have five copies of
a outside, one in membrane 1, five copies of b in membrane
2, and 4þ 3þ 2þ 1 ¼ 10 copies of c in membrane 2: the
first copy of b has produced one c in each of the subsequent
step, the next one has evolved only three times, and so on.
At any moment, the rule a! bðb; outÞða; in2Þ can be used
in membrane 1. One copy of b is kept in membrane 1,
one copy is sent outside (hence the string collected becomes
anb, for some n P 0), and one copy of a is sent to mem-
brane 2. At the same time with the use of the rule b! bc
for all n copies of b present here, we have to use the rule
a! dd. Membrane 2 is dissolved, its contents are left free
in membrane 1, where the rules c! ðc; outÞ and
d ! ðd; outÞ are now applicable. The rules from membrane
2 are no longer available; thus, the nþ 1 copies of b placed
in membrane 1 cannot evolve further. Because the rules
c! ðc; outÞ and d ! ðd; outÞ are used at the same time,
in parallel, we get outside the system nðnþ 1Þ=2 copies of
c and one copy of d. Consequently, any string of the form
anbcidcj, for n P 0 and iþ j ¼ nðnþ 1Þ=2 belongs to the
output of this system. Hence, the language obtained in this
way is
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Fig. 1. A membrane structure.
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Fig. 2. Example of a P system.
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LðpÞ¼ anbcidcj j n P 0; and iþ j¼ nðnþ1Þ
2

; i;j P 0

� �

Definition 1. A trajectory is an element t 2 V �, where
V ¼ fr; ug, r and u are versors in the plane; r stands for the
right direction, whereas u stands for up direction.

Definition 2. Let R be an alphabet and let t be a trajectory,
t ¼ t1t2 . . . tn, where ti 2 V ; 1 6 i 6 n. Let a; b be two words
over R, a ¼ a1a2 . . . ap; b ¼ b1b2 . . . bq, where
ai; bj 2 R; 1 6 i 6 p and 1 6 j 6 q. The shuffle of a with b
on the trajectory t, denoted by a b is defined as follows:

if j a j6¼j tjr or j b j6¼j tju, then a b = /, else
a b ¼ c1c2 . . . cpþq, where, if j t1t2 . . . ti�1jr ¼ k1 and
j t1t2 . . . ti�1ju ¼ k2, then

ci ¼
ak1þ1 if ti ¼ r

bk2þ1 if ti ¼ u

�

Definition 3. If T is a set of trajectories, where T � V � the
shuffle of a with b on the set T of trajectories, denoted
a b, is

a b ¼
[

t2T

a b

The above operation is extended to languages over R, if
L1; L2 � R�, then

L1 L2 ¼
[

a2L1;b2L2

a b

Definition 4. A set T of trajectories is commutative if the
operation is a commutative operation, i.e.,
a b ¼ b a, for all a; b 2 R�.

Example 2. Let a and b be the two words
a ¼ a1a2a3a4a5a6a7a8a9, b ¼ b1b2b3b4b5 and assume that
t ¼ r3u2r3urur2u. The shuffle of a with b on the trajectory
t is

a b ¼ a1a2a3b1b2a4a5a6b3a7b4a8a9b5

The result has the following geometrical interpretation
(see Fig. 3): the trajectory t defines a line starting in
the origin and continuing one unit to the right or up,
depending on the definition of t. Note that the trajectory
ends in the point with coordinates (9,5) that is exactly
the upper right corner of the rectangle defined by a
and b. Hence, the result of the shuffle of a with b on
the trajectory t is nonempty.

Hence, trajectory t defines a line in the rectangle
OAEB, on which one has ‘‘to walk” starting from the
corner O, the origin, and ending in the corner E, the exit
point. In each lattice point one has to follow one of the
versors r or u according to the definition of t.

Now, consider another trajectory t0, say t0 ¼ ur5u3rur3.
In Fig. 3, the trajectory t0 is depicted by a much thicker line
than the trajectory t.

a b ¼ b1a1a2a3a4a5b2b3b4a6b5a7a8a9

Consider the set of trajectories T ¼ ft; t0g. The shuffle of a
with b on the set T of trajectories is

a b ¼ fa1a2a3b1b2a4a5a6b3a7b4a8a9b5;

b1a1a2a3a4a5b2b3b4a6b5a7a8a9g:

We have the following theorems appearing in [4].

Theorem 1. Let T ba a set of trajectories, T � fr; ug�. The

following assertions are equivalent:

(i) For all regular languages L1; L2; L1 L2 is a regular
language.

(ii) T is a regular language.

Theorem 2. Let T be a set of trajectories, T � fr; ug�. The

following assertions are equivalent:

(i) For all regular languages L1; L2; L1 L2 is a con-
text-free language.

(ii) T is a context-free language.

Theorem 3. Let T be a set of trajectories, T � fr; ug� such

that T is a regular language.

(i) If L1 is a context-free language and if L2 is a regular
language, then L1 L2 is a context-free language.

(ii) If L1 is a regular language and if L2 is a context-free
language, then L1 L2 is a context-free language.

Theorem 4. Let L1; L2 and T, T � fr; ug� be three

languages.

(i) If all three languages are regular languages, then
L1 L2 is a regular language.
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Fig. 3. Geometrical interpretation of trajectories.
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(ii) If two languages are regular languages and the third
one is a context-free language, then L1 L2 is a
context-free language.

3. Algebraic properties of trajectory

We now provide some algebraic properties of
trajectories.

Definition 5. Let L be a language over V and let T be a set
of trajectories, then LT is defined as

LT ¼
[

a;b2L

a b

Proposition 1. Let L; L1;L2 be three languages over R and

T � V � be a set of trajectories. Then, we have

(i) If L1 � L2 then LT
1 � LT

2 .
(ii) LT 1[T 2 ¼ LT 1 [ LT 2 .

(iii) LT 1\T 2 � LT 1 \ LT 2 .
(iv) ðL1 [ L2ÞT ¼ LT

1 [ LT
2 [ L1 L2 [ L2 L1.

(v) ðL1 \ L2ÞT � LT
1 \ LT

2 .

Proof

(i) We prove that L1 � L2 ) LT
1 � LT

2 . For every x 2 LT
1

there exist y; z 2 L1; t 2 T such that x ¼ y z. But
we have y; z 2 L2 (since L1 � L2) with x ¼ y z, so
x 2 LT

2 and LT
1 � LT

2 .
(ii) First we prove that, LT 1[T 2 � LT 1 [ LT 2 .

For every x 2 LT 1[T 2 , there exist y; z 2 L and
t 2 T 1 [ T 2 such that x ¼ y z.
Since t 2 T 1 [ T 2, t 2 T 1 or t 2 T 2.
Hence x 2 LT 1 or x 2 LT 2 (i.e.,) x 2 LT 1 [ LT 2)
LT 1[T 2 � LT 1 [ LT 2 . Now, let x 2 LT 1 [ LT 2 ) x 2 LT 1

or x 2 LT 2

) there exist y; z 2 L such that x ¼ y z, t 2 T 1 or
x ¼ y z; t 2 T 2.
) x ¼ y z; t 2 T 1 [ T 2

) x 2 LT 1[T 2

(i.e.,) LT 1 [ LT 2 � LT 1[T 2

Hence LT 1[T 2 ¼ LT 1 [ LT 2 .
(iii) For every x 2 LT 1\T 2 there exist y; z 2 L and t 2 T 1 \ T 2

such that

x ¼ y z

) x 2 LT 1 and x 2 LT 2 since t 2 T 1 and T 2

) x 2 LT 1 \ LT 2

) LT 1\T 2 � LT 1 \ LT 2

(iv) ðL1 [ L2ÞT ¼ LT
1 [ LT

2 [ L1 L2 [ L2 L1.
Let z 2 ðL1 [ L2ÞT
ðL1 [ L2ÞT ¼ fx y=x; y 2 L1 [ L2; t 2 T g
Since x; y 2 L1 [ L2, x; y 2 L1 or x; y 2 L2 or
x 2 L1; y 2 L2 or x 2 L2; y 2 L1) z 2 LT

1 or z 2 LT
2 or

z 2 L1 L2 or z 2 L2 L1

(i.e.,)
z 2 LT

1 [ LT
2 [ L1 L2 [ L2 L1.ðL1 [ L2ÞT �LT

1[
LT

2 [ L1 L2 [ L2 L1.
Let z 2 LT

1 [ LT
2 [ L1 L2 [ L2 L1.

) z 2 LT
1 or z 2 LT

2 or z 2 L1 L2 or z 2 L2 L1

) z ¼ x y; where x; y 2 L1 and t 2 T

¼ x y; where x; y 2 L2 and t 2 T

¼ x y; where x 2 L1; y 2 L2 and t 2 T

¼ x y; where x 2 L2; y 2 L1 and t 2 T

) x; y 2 L1 [ L2

) z 2 ðL1 [ L2ÞT (i.e.,)

ðL1 [ L2ÞT ¼ LT
1 [ LT

2 [ L1 L2 [ L2 L1.

(v)ðL1 \ L2ÞT ¼ LT
1 \ LT

2

For every z 2 ðL1 \ L2ÞT , there exist x; y 2 L1 \ L2 and
t 2 T such that

z ¼ x y

) x; y 2 L1 and x; y 2 L2; t 2 T

) z ¼ x y 2 LT
1 and z ¼ x y 2 LT

2

) z 2 LT
1 and LT

2

) z 2 LT
1 \ LT

2

ðL1 \ L2ÞT � LT
1 \ LT

2 . h

Remark 1. Let L be a language over R and T 1 and T 2 be
trajectories over V, then LT 1T 2 6¼ ðLT 1ÞT 2 . For example, con-
sider L ¼ fanb=n P 1g

T 1 ¼ frnum=n;m P 1g
T 2 ¼ funrm=n;m P 1j�

Now

LT 1 ¼
[

t2T 1

x y

¼ fambanb=m; n P 1g
ðLT 1ÞT 2 ¼ fambanbam1 ban1 b=m; n;m1; n1 P 1g

Similarly LT 1T 2 ¼ famanbab=m; n P 1g where T 1T 2 ¼
rnumunrm.

so that LT 1T 2 6¼ ðLT 1ÞT 2 .

Proposition 2. Let L1; L2 be languages over R and T � V � be
a set of commutative trajectories. Then, we have

ðL1 [ L2ÞT ¼ LT
1 [ LT

2 [ L1 L2.

Proof. From (iv) of Proposition 1, we have

ðL1 [ L2ÞT ¼ LT
1 [ LT

2 [ L1 L2 [ L2 L1:

Since T is commutative, we have

L1 L2 ¼ L2 L1

ðL1 [ L2ÞT ¼ LT
1 [ LT

2 [ L1 L2: �
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4. Trajectory P system

In this section we introduce trajectory P system. For this
we require the following notion.

Definition 6. In a membrane structure, if the ith membrane is
inside the jth membrane and there is no other membrane
containing i inside j, then j is called the immediate successor
of i.

For example, in Fig. 1, membrane 1 is the immediate
successor of membrane 4 but it is not an immediate
successor of membrane 5.

Definition 7. A trajectory P system is defined as
p ¼ ðV ; T ; l; l1; l2 . . . ; ln; ðL1; T 1; tarÞ; ðL2; T 2; tarÞ; . . . ;

ðLn; T n; tarÞÞ

where
(i) V is an alphabet; its elements are called objects;
(ii) T ¼ fr; ug (the control alphabet);
(iii) l is a membrane structure consisting of n mem-

branes l1; l2; . . . ; ln;
(iv) Li � V �; T i � T � and tar 2 fhere;inj; outg;

j ¼ 1; . . . ; n.

For each i, 1 6 i 6 n, let ðLi; T iÞ be the content of ith
membrane. If i is the elementary membrane then LT i

i is
the language computed in the ith membrane.

The tar ¼ out is attached with all the elementary mem-
branes. Let L0i ¼ LT i

i be sent to the immediate successor.
If j is the immediate successor of the ith membrane and

if j does not contain any membrane other than i, then
ðL0i [ LjÞT j , computed in the jth membrane and depending
on the target attached, is sent to the inner membrane if
tar ¼ ini or sent to the outer membrane if tar ¼ out or
stays in the same membrane if tar ¼ here.

If j is the immediate successor of m elementary mem-
branes i1; i2; . . . ; im, then the computation is done in each
of the m membranes i1; i2; . . . ; im and the languages
L

T i1
i1 ; L

T i2
i2 ; . . . ; LT im

im obtained by computations, are sent to
the jth membrane. Let L0ik ¼ L

T ik
ik ; 1 6 k 6 m. Then the com-

putation is done in the jth membrane and the language
obtained is L0j ¼ ðL0i1 [ L0i2 [ . . . [ L0im [ LjÞT j , depending on
the target attached. It is either sent to any one of the m ele-
mentary membranes if target is tar ¼ inik ; 1 6 k 6 m, or
sent to the outer membrane if the target tar ¼ out or stays
in the membrane if tar ¼ here.

This process is repeated till the language is sent to the
skin membrane and the language obtained by the computa-
tions in the skin membrane is denoted by LðpÞ.

Example 3. Consider the system p ¼ ðV ; T ; l; l1; l2;
ðL1; T 1; outÞ; ðL2; T 2; in1ÞÞ where V ¼ fa; bg; T ¼ fr; ug
and the membrane structure (Fig. 4)

Let

L1 ¼ fa2; b2g; T 1 ¼ frnun=n P 1g
L2 ¼ fb2g; T 2 ¼ frnumrn=m; n P 1g
L01 ¼ LT 1

1 ¼ fa4; b4; a2b2; b2a2g
L02 ¼ ðL01 [ L2ÞT 2 ¼ fa2b4; a2b2a2; b2b2a2; b6g
L001 ¼ ðL02 [ L1ÞT 1 ¼ fa2b4a2b2a2; a2b4b2b2a2; a2b4b6;

a2b2a2b2b2a2; a2b2a2b6; b2b2a2b6; a2b2g
L002 ¼ ðL2 [ L001Þ

T 2 ¼ fa2b2b2; a2b4a2b4b2b2a2a2b2a2;

a2b4a2b4b6a2b2a2;

a2b4a2b2a2b2b2a2a2b2a2; . . .g

LðpÞ ¼ ðLn
1 [ L2ÞT 2 ¼ x1yx2

x ¼ x1x2

x; y 2 Ln
1 [ L2

jx1j ¼ jx2j

,
8
><

>:

9
>=

>;

LðpÞ is a context-free language.

Example 4. Consider the system p ¼ ðV ; T ; l; l1;
l2; . . . ; l4; ðL1; T 1; outÞ; ðL2; T 2; in1Þ; ðL3; T 3; outÞ;
ðL4; T 4; iniÞi ¼ 2; 3Þ where V ¼ fa; bg; T ¼ fr; ug and mem-
brane structure as given in Fig. 5. Let

L1 ¼ fan=n P 1g; T 1 ¼ frnum=m; n P 1g
L2 ¼ fbn=n P 1g; T 2 ¼ frnu=n P 1g
L3 ¼ fabnþ1=n P 1g; T 3 ¼ frmun=m; n P 1g
L4 ¼ fbanþ1=n P 1g; T 4 ¼ funrn=n P 1g

L01 ¼ LT 1
1 ¼ fanþm=n;m P 1g

L02 ¼ ðL01 [ L2ÞT 2

¼ fanþmb; bna; amþnþ1; bnþ1=n;m P 1g
L001 ¼ ðL02 [ L1ÞT 1

¼ fanþmbbna; anþmbamþnþ1;

anþmbbnþ1; . . . =n;m P 1g

2

1

Fig. 4. Membrane structure of a trajectory P system I.

1

2
3

4

Fig. 5. Membrane structure of trajectory P system II.
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L002 ¼ ðL001 [ L2ÞT 2

¼ fanþmbbnab; anþmbamþnþ1b; . . . =n;m P 1g
L03 ¼ LT 3

3 ¼ fabn; abm=n;m P 1g
L04 ¼ ðL002 [ L03 [ L4ÞT 4

¼ fanþmbbnabab2nþmþ2;

anþmbamþnþ1bab2nþ2mþ2; . . . =n;m P 1g

LðpÞ is any one of the languages in L04 which is a context-
free language.

Remark 2. In a trajectory P system
p ¼ ðV ; T ; l; l1; l2; . . . ; l4; ðL1; T 1; outÞ; ðL2; T 2; outÞ; . . . ;
ðL4; T 4; outÞÞ, with membrane structure as given in Fig. 6.
If L1 ¼ L; L2 ¼ /; L3 ¼ L and L4 ¼ /, then

LðpÞ ¼ððLT 1ÞT 2 [ LT 3ÞT 4

¼ððLT 1ÞT 2ÞT 4 [ ðLT 3ÞT 4[
ðLT 1ÞT 2 LT 3 [ LT 3 ðLT 1ÞT 2

Theorem 5. In a trajectory P system p ¼ ðV ; T ; l; l1; l2; . . . ;
ln; ðL1; T 1; tarÞ; ðL2; T 2; tarÞ; . . . ; ðLn; T n; tarÞÞ. Suppose T 1;
T 2; . . . ; T n are regular languages, then for all regular lan-
guages L1; L2; . . . ; Ln, LðpÞ is a regular language.

Proof. From the definition of trajectory P system if
tar ¼ out for all membranes, we have

L0j ¼ ½ððL
T k
k [ Lkþ1ÞT kþ1 [ Lkþ2ÞT kþ2 [ Lr�T r

It follows from the Theorem 1 that L0j is regular for all
j ¼ 1; 2; . . . ; m.

L01 [ L02 [ � � � [ L0m is regular, since each L0j is regular. By
Theorem 1, it follows that

LðpÞ ¼ ððL01 [ L02 [ � � � [ L0mÞ [ LnÞT n

is regular.
In general, we obtain that LðpÞ is regular if tar 2

fhere;inj; outg. h

Theorem 6. In a trajectory P system p ¼ ðV ; T ; l;
l1; l2; . . . ; ln; ðL1; T 1; tarÞ; ðL2; T 2; tarÞ; . . . ; ðLn; T n; tarÞÞ.
Suppose T 1; T 2; . . . ; T n are context-free languages, then
for all regular languages L1; L2; . . . ; Ln, LðpÞ is a context-

free language.

Proof. The proof is similar to the proof of Theorem 5 and
it follows from Theorem 2. h

5. Conclusion

In this paper, we have introduced trajectory P system
and studied its properties.
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[2] Păun Gh, Rozenberg G, Salomaa A. Membrane computing with
external output. Fundam Inform 2000;34:313–40.

[3] Ahmad Kadrie, Dare VR, Thomas DG, et al. Algebraic properties
of the shuffle over x-trajectories. Inform Process Lett 2001;80:
139–44.

[4] Mateescu A, Rozenberg G, Salomaa A. Shuffle on trajectories:
syntactic constraints. Theor Comput Sci 1998;197:1–56.

T

T

T

T1

2

4

3

Fig. 6. Membrane structure of trajectory P system III.

616 S. Annadurai et al. / Progress in Natural Science 18 (2008) 611–616


